[This question paper contains 8 printed pages.]

Sr. No. of Question Paper: 5006

Unique Paper Code
Name of the Paper
Name of the Course
Semester

Duration : 3 Hours
Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. All questions are compulsory.

Attempt any two parts from each question.
All questions carry equal marks.
(a) Define limit point of a set $\mathrm{S} \subseteq \mathbb{R}$. Find the limit points of the following sets :
P.T.O.
(i) \mathbb{N}
(ii) $\mathbb{R}^{\mathbb{R}}$
(b) Define closed set. Prove that the union of finite number of closed sets is closed set.
(c) If A and B are non-empty bounded above subsets
of \mathbb{R} ans $C=\{x+y \mid x \in A, y \in B]$ then show
that $: \operatorname{Sup}(C)=\operatorname{Sup}(A)+\operatorname{Sup}(B)$.
(d) Define neighborhood of a point and an open set.

Give an example of each of the following :
(i) A non-empty set which is a neighborhood of each of its points with the exception of one point.
(ii) A non-empty set which is neither an open set nor a closed set.
(iii) A non-empty closed set which is not an interval.
(iv) A non-empty open set which is not an interval.
2. (a) Test the continuity of function

$$
f(x)=\left\{\begin{aligned}
\frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}, & x \neq 0, \\
0, & x=0
\end{aligned} \quad \text { at } x=0 .\right.
$$

(b) Show that the function f defined by $f(x)=x^{2}$ is
uniformly continuous on [-2,2].
(c) Prove that the union of an arbitrary family of open sets is an open set.
(d) Show that every continuous function on a closed interval is bounded.
3. (a) Show that a sequence cannot converge to more than one limit.
(b) Show that the sequence $<a_{n}>$ defined by:

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{\mathrm{n}+1}+\frac{1}{\mathrm{n}+2}+\cdots \cdots \cdots+\frac{1}{\mathrm{n}+\mathrm{n}}, \quad \forall \mathrm{n} \text { converges. }
$$

(c) State Cauchy convergence criterion for sequences and hence show that the sequence $\left.<x_{n}\right\rangle$ defined by :

$$
x_{n}=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots \cdots+\frac{1}{2 n-1}
$$

does not converge.
(d) Show that every convergent sequence is bounded but the converse is not true.
4. (a) State Leibnitz test for convergence of an alternating series: $\sum_{1}^{\infty}(-1)^{\mathrm{n}-1} \mathrm{u}_{\mathrm{n}} \forall \mathrm{n}$ and test the convergence and absolute convergence of the series:

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots \cdots \cdots
$$

(b) Check the convergence of the following series:

$$
\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdots 3 n}{7 \cdot 10.13 \cdots(3 n+4)} x^{n}(x>0)
$$

(c) Show that the sequence $\left.<x_{n}\right\rangle$ defined by:

$$
x_{1}=1, x_{n+1}=\frac{3+2 x_{n}}{2+x_{n}}, n \geq 2 \text { is convergent. Also }
$$

find $\lim _{n \rightarrow \infty} x_{n}$.
(d) Test the convergence of the series whose $\mathrm{n}^{\text {th }}$ term

$$
\text { is }(\sqrt{n+1}-\sqrt{n}) \text {. }
$$

5. (a) If $\left\langle\mathrm{a}_{\mathrm{n}}\right\rangle$ and $\left\langle\mathrm{b}_{\mathrm{n}}\right\rangle$ are sequences of real numbers such that
$\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$ then prove that:

$$
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a b .
$$

(b) Define Riemann integrability of a function. Show that x^{2} is integrable on any interval $[0, k]$.
(c) Show that $\lim _{n \rightarrow \infty} \frac{1}{n}\left[1+2^{\frac{1}{2}}+3^{\frac{1}{3}}+\cdots \cdots+n^{\frac{1}{n}}\right]=1$.
(d) Define the sum of a convergent series. Find the sum of the following series :

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\cdots \cdots
$$

6. (a) Test the convergence and absolute convergence of the series :
(i) $\sum \frac{(-1)^{n-1}}{n^{2}}$.
(ii) $\sum \frac{(-1)^{n-1}}{n \sqrt{n}}$.
(b) Let $<a_{n}>$ be a sequence defined by

$$
\mathrm{a}_{1}=1, \mathrm{a}_{\mathrm{n}+1}=\frac{\left(2 \mathrm{a}_{\mathrm{n}}+3\right)}{4}, \quad \forall \mathrm{n} \geq 1,
$$

Prove that $<a_{n}>$ is bounded above and monotonically increasing. Also find $\lim _{n \rightarrow \infty} a_{n}$.
(c) Prove that every continuous function is integrable.
(d) Discuss the convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{\sin n x+\cos n x}{n^{3 / 2}}
$$

[This question paper contains 8 printed pages.]
Sr. No. of Question Paper : 5025
Unique Paper Code 62354443
: Analysis (LOCF) Name of the Paper
Name of the Course B.A. (Prog.)
Semester : IV
Duration: 3 Hours Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. All questions are compulsory.
3. Attempt any two parts from each question.
4. All questions carry equal marks.
5. (a) Let S be a non empty bounded set in \mathbb{R}. Let

$$
\begin{aligned}
& a>0, \text { and let } a S=\{\text { as: } s \in S\} \text {. Prove that } \\
& \text { inf } a S=a \inf S, \sup a S=a \sup S .
\end{aligned}
$$

(b) Define order completeness property of real numbers.
(c) Define limit point of a set. Show that the set \mathbb{N} of natural numbers has no limit point.
(d) State and prove Archimedean property of real numbers.
2. (a) Show that the function defined as

$$
f(x)= \begin{cases}x, & \text { if } x \text { is irrational } \\ -x, & \text { if } \\ x \text { is rational }\end{cases}
$$

is continuous only at $x=0$.
(b) Show that the function f defined by $f(x)=x^{2}$ is uniformly continuous on $[-2,2]$.
(c) Define an open set. Prove that every open interval is an open set. Which of the following sets are open.
(i) $] 2, \infty[$
(ii) $[3,4[$
(d) Let A and B be bounded nonempty subsets of R, and let $A+B=\{a+b: a \in A, b \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B$.
3. (a) Prove that every convergent sequence is bounded.

Justify by an example that the converse is not true.
(b) Prove that the sequence $\left\langle\mathrm{a}_{\mathrm{n}}\right\rangle$ defined by the recursion formula :

$$
a_{1}=\sqrt{7}, a_{n+1}=\sqrt{7+a_{n}}
$$

converges to the positive root of $x^{2}-x-7=0$.
(c) State Cauchy's convergence criterion for
sequences. Check whether the sequence $\left\langle a_{n}\right\rangle$, where

$$
a_{n}=1+\frac{1}{5}+\frac{1}{9}+\cdots \cdots \cdots \cdot \cdot+\frac{1}{4 n-3}
$$

is convergent or not.
(d) Test for convergence the series:

$$
1+\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\cdots \ldots \ldots \ldots \ldots \ldots
$$

4. (a) Prove that, if the series $\sum u_{n}$ converges, then
$\lim _{n \rightarrow \infty} u_{n}=0$. Show by an example that the converse is not true.
(b) Test for convergence the series:

$$
\sum_{n=1}^{\infty} \frac{2.4 .6 \ldots \ldots \ldots \ldots . .(2 n+2)}{3.5 .7 \ldots \ldots \ldots \ldots .(2 n+3)} x^{n-1} \quad(x>0)
$$

(c) Let $\left\langle a_{n}\right\rangle$ be a sequence defined by:

$$
a_{1}=1, a_{n+1}=\frac{3+2 a_{n}}{2+a_{n}}, n \geq 1 .
$$

Show that $\left\langle\mathrm{a}_{\mathrm{n}}\right\rangle$ is convergent and find its limit.
(d) Prove that a sequence of real numbers converges if and only if it is a Cauchy sequence.
5. (a) State Leibnitz test for convergence of an alternating series of real numbers. Apply it, to test for convergence the series

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

(b) Show the sequence defined by $\left\langle a_{n}\right\rangle=\left\langle n^{2}\right\rangle$ is not a Cauchy sequence.
(c) Prove that the sequence $\left\langle a_{n}\right\rangle$ defined by the relation,

$$
a_{n}=1, a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots \cdots \cdots \cdots+\frac{1}{(n-1)!}, \quad(n \geq 2)
$$

converges.
(d) Prove that every continuous function is integrable.
6. (a) Define Riemann integrability of a bounded function f on a bounded closed interval $[a, b]$. Show that the function f defined on $[a, b]$ as

$$
f(x)= \begin{cases}0 & \text { when } x \text { is rational } \\ 1 & \text { when } x \text { is irrational }\end{cases}
$$

is not Riemann integrable.
(b) Test for convergence the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n \alpha}{\sqrt{n^{3}}}, \alpha \text { being real. }
$$

(c) State D'Alembert's ratio test for the convergence of a positive term series. Use it to test for
convergence the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$.

(d) Show that $f(x)=\frac{1}{x}$ is not uniformly continuous on

$$
[0,1] .
$$

